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8.56 A proposed freestream velocimeter would use a cylinder with pressure taps at θ = 
180° and at 150°. The pressure difference would be a measure of stream velocity U∞ . 
However, the cylinder must be aligned so that one tap exactly faces the freestream. Let 
the misalignment angle be δ, that is, the two taps are at (180° + δ )  and (150° + δ ) . Make 
a plot of the percent error in velocity measurement in the range –20° < δ < +20° and 
comment on the idea. 

Solution: Recall from Eq. (8.34) that the surface velocity on the cylinder equals 2U∞sinθ. 
Apply Bernoulli’s equation at both points, 180° and 150°, to solve for stream velocity: 
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The error is zero when δ = 0°. Thus we can plot the percent error versus δ. When δ = 0°, 
the denominator above equals 0.5. When δ = 5°, the denominator equals 0.413, giving an 
error on the low side of (0.413/0.5) – 1 = –17%! The plot below shows that this is a very 
poor idea for a velocimeter, since even a small misalignment causes a large error. 

 

Problem 8.56 
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8.57 In principle, it is possible to use rotating cylinders as aircraft wings. Consider a 
cylinder 30 cm in diameter, rotating at 2400 rev/min. It is to lift a 55-kN airplane flying 
at 100 m/s. What should the cylinder length be? How much power is required to maintain 
this speed? Neglect end effects on the rotating wing. 

Solution: Assume sea-level air, ρ = 1.23 kg/m3. Use Fig. 8.11 for lift and drag: 
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2 2
D

1.23
Drag  C U DL (1.1) (100) (0.3)(17) 33600 N

2 2

Power required FU (33600)(100) .Ans3.4 MW!

 

The power requirements are ridiculously high. This airplane has way too much drag. 
 

8.58 Plot the streamlines due to a line sink 
(–m) at the origin, plus line sources (+m) at 
(a, 0) and (4a, 0). Hint: A cylinder of radius 
2a appears. 

Solution: The overall stream function is  
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The cylinder shape, of radius 2a, is the 
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2a
x

+m

−m

+m

 
Fig. P8.58 

streamline /2.ψ π= −  Ans. 
 

8.59 By analogy with Prob. 8.58 above, plot the streamlines due to counterclockwise line 
vortices +K at (0, 0) and (4a, 0) plus a clockwise line vortex (–K) at (a, 0). Hint: Again a 
cylinder of radius 2a appears. 
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K K Ka 2a 4a  

Fig. P8.59 
 

8.60 One of the corner-flow patterns of Fig. 8.15 is given by the cartesian stream 
function ψ = A(3yx2 – y3). Which one? Can this correspondence be proven from  
Eq. (8.49)? 

Solution: This ψ is Fig. 8.15a, flow in a 60° corner. [Its velocity potential was given 
earlier Eq. (8.49) of the text.] The trigonometric form (Eq. 8.49 for n = 3) is 

3 2 3Ar sin(3 ), but sin(3 ) 3sin cos sin .

Introducing y r sin and x r cos ,  we obtain .Ans

ψ θ θ θ θ θ

θ θ ψ

= ≡ −

= = = 2 3A(3yx y )−
 

 

8.61 Plot the streamlines of Eq. (8.49) in 
the upper right quadrant for n = 4. How 
does the velocity increase with x outward 
along the x axis from the origin? For what 
corner angle and value of n would this 
increase be linear in x? For what corner 
angle and n would the increase be as x5? 

Solution: For n = 4, we have flow in a 
45° corner, as shown. Compute 

45°

n = 4

x

y

 
Fig. P8.61 
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r

Along the -axis, 0,  r , v (const) . (a)

n

x x u Ansx3

 

In general, for any n, the flow along the x-axis is n 1u (const)x .−=  Thus u is linear in x for n = 2 
(a 90° corner). Ans. (b). And u = Cx5 if n = 6 (a 30° corner). Ans. (c) 
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8.62 Combine stagnation flow, Fig. 8.14b, 
with a source at the origin: 

2f(z) Az ln(z)m= +  

Plot the streamlines for m = AL2, where L 
is a length scale. Interpret. 

Solution: The imaginary part of this 
complex potential is the stream function: 

SP

m
x

y

 

Fig. P8.62 

ψ − � �= + =� �� �
1 2y

2Axy tan , with AL
x

m m  

The streamlines are shown on the previous page. The source pushes the oncoming 
stagnation flow away from the vicinity of the origin. There is a stagnation point above the 
source, at (x, y) = (0, L/√2). Thus we have “stagnation flow near a bump.” Ans. 

 

8.63 The superposition in Prob. 8.62 above leads to stagnation flow near a curved 
bump, in contrast to the flat wall of Fig. 8.15b. Determine the maximum height H of the 
bump as a function of the constants A and m. The bump crest is a stagnation point: 

= − + =bump crestv 2 0 whence .
m

AH Ans
H

m
H

A
=bump 2

 

 

8.64 Consider the polar-coordinate velocity potential φ = Br1.2cos(1.2θ ) , where B is a 
constant. (a) Determine whether 2 0φ∇ = . If so, (b) find the associated stream function 
ψ(r, θ )  and (c) plot the full streamline which includes the x-axis (θ = 0) and interpret. 

Solution: (a) It is laborious, but the velocity potential satisfies Laplace’s equation 
in polar coordinates: 

∂ ∂φ ∂ ∂ φφ
∂ ∂ ∂ ∂θ

� �� �∇ + ≡� �� �
� � � �

2
2

2 2

1 1
= 0 if . (a)r Ans

r r r rr
Br= 1.2cos(1.2 )φ θ  

(b) This example is one of the family of “corner flow” solutions in Eq. (8.49). Thus: 

. (b)AnsBr= 1.2sin(1.2 )ψ θ  
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(c) This function represents flow around a 150° corner, as shown below. Ans. (c) 

 

Fig. P8.64 
 

8.65 Potential flow past a wedge of half-
angle θ leads to an important application of 
laminar-boundary-layer theory called the 
Falkner-Skan flows [Ref. 15 of Chap. 8, 
pp. 242–247]. Let x denote distance along 
the wedge wall, as in Fig. P8.65, and let 
θ  = 10°. Use Eq. (8.49) to find the 
variation of surface velocity U(x) along the 
wall. Is the pressure gradient adverse or 
favorable? 

 

Fig. P8.65 

Solution: As discussed above, all wedge flows are “corner flows” and have a velocity 
along the wall of the form n 1u (const)x ,−=  where n = π /(turning angle). In this case, the 
turning angle is β = (π − θ ) , where θ = 10° = π/18. Hence the proper value of n here is: 

n 118
n , hence U Cx

/18 17
Ans.

π π
β π π

−= = = =
−

1/17Cx (favorable gradient)=  

 

8.66 The inviscid velocity along the wedge in Prob. 8.65 has the form U(x) = Cxm, 
where m = n − 1 and n is the exponent in Eq. (8.49). Show that, for any C and n, 
computation of the laminar boundary-layer by Thwaites’ method, Eqs. (7.53) and (7.54), 
leads to a unique value of the Thwaites parameter λ. Thus wedge flows are called similar 
[Ref. 15 of Chap. 8, p. 244]. 

Solution: The momentum thickness is computed by Eq. (7.54), assuming θo = 0: 
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8.67 Investigate the complex potential function f(z) = U∞(z + a2/z), where a is a 
constant, and interpret the flow pattern. 

x
U∞

y

a

 

Fig. P8.67 

Solution: This represents flow past a circular cylinder of radius a, with stream 
function and velocity potential identical to the expressions in Eqs. (8.31) and (8.32) with 
K = 0. [There is no circulation.] 

 

8.68 Investigate the complex potential function f(z) = U∞z + m ln[(z + a)/(z − a)], where 
m and a are constants, and interpret the flow pattern. 

x
U∞

y

0 a−a

(+m)(+m)

 

Fig. P8.68 

Solution: This represents flow past a Rankine oval, with stream function identical to 
that given by Eq. (8.29). 

 

8.69 Investigate the complex potential 
function f(z)  = Acosh(π z/a), where a is a 
constant, and plot the streamlines inside 
the region shown in Fig. P8.69. What 
hyphenated French word might describe 
this flow pattern? 

 

Fig. P8.69 
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Solution: This potential splits into 

ψ π π
φ π π

=
=

Asinh ( x/ )sin( y/ ) 

A cosh ( x/ )cos( y/ )

a a

a a
 

and represents flow in a “cul-de-sac” or 
blind alley. 

 
 

8.70 Show that the complex potential f(z) = U∞[z + (a/4) coth(π z /a)] represents flow 
past an oval shape placed midway between two parallel walls y = ±a/2. What is a 
practical application? 

≈

y
y = a/2

y = −a/2

U∞

a
4

 

Fig. P8.70 

Solution: The stream function of this flow is 

πψ
π π∞

� �
= −� �−� �

(a/4)sin (2 y/a)
U y

cosh(2 x/a) cos(2 y/a)
 

The streamlines are shown in the figure. The body shape, trapped between y = ±a/2, 
is nearly a cylinder, with width a/2 and height 0.51a. A nice application is the 
estimate of wall “blockage” effects when a body (say, in a wind tunnel) is trapped 
between walls. 

 

8.71 Figure P8.71 shows the streamlines and potential lines of flow over a thin-plate 
weir as computed by the complex potential method. Compare qualitatively with 
Fig. 10.16a. State the proper boundary conditions at all boundaries. The velocity potential 
has equally spaced values. Why do the flow-net “squares” become smaller in the 
overflow jet? 
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Fig. P8.71 

Solution: Solve Laplace’s equation for 
either ψ or φ (or both), find the velocities 
u = ∂φ/∂x, v = ∂φ/∂y, force the (constant) 
pressure to match Bernoulli’s equation on 
the free surfaces (whose shape is a priori 
unknown). The squares become smaller in 
the overfall jet because the velocity is 
increasing. 

 
 

8.72 Use the method of images to 
construct the flow pattern for a source +m 
near two walls, as in Fig. P8.72. Sketch 
the velocity distribution along the lower 
wall (y = 0). Is there any danger of flow 
separation along this wall? 

Solution: This pattern is the same as 
that of Prob. 8.28. It is created by placing 
four identical sources at (x, y) = (±a, ±a), 
as shown. Along the wall (x ≥ 0, y = 0), 
the velocity first increases from 0 to a 
maximum at x = a. Then the velocity 
decreases for x > a, which is an adverse 
pressure gradient—separation may occur. 
Ans. 

 

Fig. P8.72 
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8.73  Set up an image system to compute 
the flow of a source at unequal distances 
from two walls, as shown in Fig. P8.73. 
Find the point of maximum velocity on the 
y-axis. 

Solution: Similar to Prob. 8.72 on the pre-
vious page, we place identical sources (+m) 
at the symmetric (but non-square) positions 

 

Fig. P8.73 

(x, y) = (±2a, ±a) as shown below. The induced velocity along the wall (x > 0, y = 0) has 
the form 

2 2 2 2

2m(x 2a) 2m(x 2a)
U

(x 2a) a (x 2a) a

+ −= +
+ + − +

 

 

This velocity has a maximum (to the right) at x ≈ 2.93a, U ≈ 1.387 m/a.  Ans. 
 

8.74 A positive line vortex K is trapped in a corner, as in Fig. P8.74. Compute the total 
induced velocity at point B, (x, y) = (2a, a), and compare with the induced velocity when 
no walls are present. 

 

Fig. P8.74 
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Solution: The two walls are created 
by placing vortices, as shown at right, at 
(x, y) = (±a, ±2a). With only one vortex 
(#a), the induced velocity Va would be 

a
K K K

, or  at 45  
2a 2a a 2

= + °
√

�V i j  

as shown at right. With the walls, however, 
we have to add this vectorially to the 
velocities induced by vortices b, c, and d.  

a,b,c,d

B

K 1 1 1 3 K 1 3 1 1
With walls: ,

a 2 10 6 10 a 2 10 6 10

K K 8K 4K
 or: 0.533 0.267 .

a a 15a 15a
Ans

� � � �= � = − − + + − + −� � � �� � � �

= + = +

V V i j 

V i j i j

 

The presence of the walls thus causes a significant change in the magnitude and direction 
of the induced velocity at point B. 

 

8.75 Using the four-source image pattern 
needed to construct the flow near a corner 
shown in Fig. P8.72, find the value of the 
source strength m which will induce a wall 
velocity of 4.0 m/s at the point (x, y) = (a, 0) 
just below the source shown, if a = 50 cm. 

Solution: The flow pattern is formed by 
four equal sources m in the 4 quadrants, as 
in the figure at right. The sources above 
and below the point A(a, 0) cancel each 
other at A, so the velocity at A is caused 
only by the two left sources. The velocity 
at A is the sum of the two horizontal 
components from these 2 sources: 

 

Fig. P8.75 
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8.76 Use the method of images to 
approximate the flow past a cylinder at 
distance 4a from the wall, as in Fig. P8.76. 
To illustrate the effect of the wall, compute 
the velocities at points A, B, C, and D, 
comparing with a cylinder flow in an 
infinite expanse of fluid (without walls). 

 

Fig. P8.76 

Solution: Let doublet #1 be above the wall, as shown, and let image doublet #2 be 
below the wall, at (x, y) = (0, −5a). Then, at any point on the y-axis, the total velocity is 

2 2
x 0 90 1 2V v U [1 ( / ) ( / ) ]a r a rθ= ° ∞= − = + +|  

Since the images are 10a apart, the cylinders are only slightly out-of-round and the 
velocities at A, B, C, D may be tabulated as follows: 

 Point: A B C D 

 r1: a a 5a 5a 

 r2: 9a 11a 5a 15a 

 Vwalls: 2.012U∞ 2.008U∞ 1.080U∞ 1.044U∞ 

 Vno walls: 2.0U∞ 2.0U∞ 1.04U∞ 1.04U∞ 

The presence of the walls causes only a slight change in the velocity pattern. 
 

8.77 Discuss how the flow pattern of 
Prob. 8.58 might be interpreted to be an 
image-system construction for circular 
walls. Why are there two images instead 
of one? 

Solution: The missing “image sink” in 
this problem is at y = +∞ so is not shown. 
If the source is placed at y = a and the 
image source at y = b, the radius of the 
cylinder will be R ( ).= ab  For further 
details about this type of imaging, see 
Chap. 8, Ref. 3, p. 230. 

 
Fig. P8.77 

 


