انتگرال همگرا و واگرا
بنابراین انتگرالهای ناسره را به دو دسته «همگرا» (Convergent) و «واگرا» (Divergent) تقسیم میکنند. اگر هریک از انتگرالهای نیمه متناهیِ بیان شده در صورت گذاره سوم، واگرا باشد، در این صورت حاصل انتگرال فوق نیز واگرا خواهد بود.
وضعیت یک سری همگرا و واگرا را میتوان با استفاده از آموزن دالامبر و آزمون جمله nام تعیین کرد. توضیح داده شدهاند. در این مطلب قصد داریم تا در مورد حاصل جمع جملات یک دنباله صحبت کرده و شما را با سری همگرا و واگرا آشنا کنیم.
سری را همگرا گوئیم در صورتی که دنباله مجموعهای جزئی آن همگرا باشد. آزمون انتگرال تابع f با ویژگیهای زیر را درنظر بگیرید: الف) f روی مجموعه تعریف شده، پیوسته و مثبت است. یعنی شرط لازم و کافی برای همگرایی سری ذکر شده همگرایی انتگرال فوق است.
توجه: لطفا پیش از خرید هر محصول، روی دکمه جزئیات کلیک کنید و توضیحات را مطالعه کنید.